Selective elimination of the contact site A protein of Dictyostelium discoideum by gene disruption.

نویسندگان

  • C Harloff
  • G Gerisch
  • A A Noegel
چکیده

The contact site A glycoprotein is a developmentally regulated cell-surface component expressed during the aggregation stage of Dictyostelium discoideum. This protein has been implicated in the EDTA-stable (Ca2(+)-independent) type of cell adhesion of aggregating cells. The gene coding for the contact site A protein was disrupted by homologous recombination, using a transformation vector that contained a 1.0-kb cDNA fragment as an insert. Transformants that did not express the protein were identified by colony immunoblotting. These transformants produced three truncated contact site A transcripts. One of them was controlled by the original contact site A promoter, as indicated by its strict developmental regulation and cAMP inducibility; the other two transcripts were transcribed from the actin 6 promoter of the vector. When cell adhesion was assayed in the transformants by agitating suspended cells in an agglutinometer, EDTA-stable adhesion was drastically reduced as compared to wild type, confirming that the contact site A glycoprotein acts as a cell-adhesion molecule. However, aggregation of the transformed cells on an agar surface was not remarkably altered. These results suggest that the contact site A glycoprotein is responsible for a 'fast' type of cell adhesion that is essential when aggregating cells are subjected to shear. When cells are not mechanically disturbed, a 'slow' type of adhesion mediated by other molecules is sufficient for their aggregation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heteroplasmic mitochondrial disease in Dictyostelium discoideum.

The bewildering complexity of the relationship between genotype and phenotype in human mitochondrial diseases has delayed an understanding of the related cytopathological mechanisms. To explore the relationship between mitochondrial dysfunction in Dictyostelium discoideum and the related cytopathologies, we determined whether the phenotypic outcomes were similar regardless of which D. discoideu...

متن کامل

dutA RNA functions as an untranslatable RNA in the development of Dictyostelium discoideum

dutA is a gene specifically expressed during the development of Dictyostelium discoideum. Toward understanding its possible role in development, we isolated and characterized the gene and its complete cDNA. We found that dutA is encoded by the nuclear genome as a single copy gene without introns. In addition, the following unique and interesting features of dutA RNA (1322 nt) emerged: (1) it ha...

متن کامل

Phg1p is a nine-transmembrane protein superfamily member involved in dictyostelium adhesion and phagocytosis.

To identify the molecular mechanisms involved in phagocytosis, we generated random insertion mutants of Dictyostelium discoideum and selected two mutants defective for phagocytosis. Both represented insertions in the same gene, named PHG1. This gene encodes a polytopic membrane protein with an N-terminal lumenal domain and nine potential transmembrane segments. Homologous genes can be identifie...

متن کامل

Isolation and characterization of a novel cytokinesis-deficient mutant in Dictyostelium discoideum.

Cytokinesis is a dramatic event in the life of any cell during which numerous mechanisms must coordinate the legitimate and complete mechanical separation into two daughter cells. We have used Dictyostelium discoideum as a model system to study this highly orchestrated event through genetic analysis. Transformants were generated using a method of insertional mutagenesis known as restriction enz...

متن کامل

The S. cerevisiae CLU1 and D. discoideum cluA genes are functional homologues that influence mitochondrial morphology and distribution.

The cluA gene, encoding a novel 150 kDa protein, was recently characterized in Dictyostelium discoideum; disruption of cluA impaired cytokinesis and caused mitochondria to cluster at the cell center. The genome of Saccharomyces cerevisiae contains an open reading frame (CLU1) that encodes a protein that is 27% identical, 50% similar, to this Dictyostelium protein. Deletion of CLU1 from S. cerev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 3 12A  شماره 

صفحات  -

تاریخ انتشار 1989